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1. Introduction

These are slightly extended notes of my lectures on the geometry of Hilbert schemes
of points that I gave at the workshop on Algebraic structures and moduli spaces at
CRM Montreal in July 2003.

The purpose of the lectures was to provide an introduction to some aspects of the
theory of Hilbert schemes of points on surfaces. It seems to me that the interest in
Hilbert schemes has many sources: There are relations to enumerative geometry, to
moduli spaces of sheaves, to the combinatorics of the symmetric group, to orbifold
cohomology, to the generalised McKay correspondence, and they provide almost all
known examples of irreducible symplectic manifolds (up to deformation).

The scope of these lectures is much narrower. I explain the classical theorems of
Fogarty and Briangon based on a technique due to Ellingsrud and Stremme and give
a fairly self-contained presentation of Nakajima’s theorem on the Heisenberg action
on the cohomology of Hilbert schemes with full proofs. I then explain work of Li,

Qin and Wang, and of Sorger and myself on the ring structure of the cohomology
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2 MANFRED LEHN

of Hilbert schemes. In this part proofs are only sketched, or some of the ingredients
are explained. The notes end with a brief discussion on the relation to a conjecture
of Ruan. Besides the orginal references, it is worth while also to look at other
review articles or lecture notes with the same or a similar subject by Nakajima
[33], Gottsche [15], Gottsche and Ellingsrud [5], Wang [38], Qin and Wang [34].

What is perhaps more interesting is what is not covered here: the relation to the
theory of symplectic varieties (cf. the notes [25]); the relation to moduli of sheaves
[31]; the work of Haiman on the n!-conjecture and related questions [22, 23];
Nakamura’s G-Hilbert schemes and the McKay correspondence [2]. The reader is

invited to look up detailed bibliographies in the quoted articles.

2. Configurations of unordered n-tuples

Configuration spaces of n-tuples of points that move on a given manifold X are
interesting topological spaces with fascinating topological and geometric properties.
There is a basic difference in whether one is interested in ordered or unordered n-
tuples. As a first approach to a proper definition of the right configuration space,
we may consider the product X™ for ordered tuples and its quotient S™(X) :=
X™/8S,, by the symmetric group for unordered tuples. In both spaces, points that
correspond to n-tuples of points that are not pairwise distinct are special: In X™
they have non-trivial isotropy groups with respect to the S,-action, in S™X they
are singular (except for the special case dim(X) = 1). One is therefore interested
in other smooth compactifications of the configuration space of n-tuples of distinct
points. For ordered n-tuples a very nice compactification was constructed by Fulton
and MacPherson [13]. For unordered n-tuples a smooth natural compactification
for all n exists so far only for curves, where the symmetric product is already
smooth, and for surfaces, where such a compactification is provided by the so-called
Hilbert schemes of points.

Assume that X is a smooth quasiprojective scheme of finite type over C. Let Z C X
be a zero-dimensional subscheme. Then H°(Z,07) is an artinian C-algebra. By
definition, the length of Z is the length of this algebra, ¢(Z) := length H°(O) =
dimc H°(Oz). Let Hilb"(X) denote the set of all zero-dimensional subschemes
Z C X of length n. We will see in the next section how Hilb™(X) can be given
a natural scheme structure. Assume now that X is reduced. If z € Z is a closed
point, the multiplicity of # in Z is defined as dim¢(0z ). We may associate to Z

the cycle |Z| corresponding to the underlying set counted with multiplicities. |Z|
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is a point in the symmetric product:

12 =) dime(Oz.) -z € S™(X).
zeEX

Sending Z to |Z| defines the so-called Hilbert-Chow map
p: Hilb"(X) — S"X.

If X is a smooth curve, p turns out to be an isomorphism for all n. Essentially, it

suffices to understand the case of the affine line: the symmetric group acts on the

coordinate ring Clzy,...,7,] of (C')™ by permuting the variables. The invariant
ring is generated by the elementary symmetric functions oy = x14+. . .4 xp,..., 0k =
Zi1<---<ik XiyTiy * " Tipye -y On = L1T2 -+ Tp. These are algebraically independent.

It follows that
S™(C) = Spec(Clz1,...,x,]°") = Spec(Cloy, . ..,0.,])) = C".

On the other hand, any zero-dimensional subscheme in C is described by a single
polynomial f(T) =T™ + a1T" ' 4+ ...+ a, of degree n. The coefficients a; define
a point @ € C*, and conversely, any such point defines a polynomial and thus a
subscheme. If Z consists of n distinct points py,...,p, € C, the coefficients of f
are precisely the elementary symmetric functions in the p;: a; = o;(p1,.-.,pn)-
For arbitrary X, the Hilbert-Chow map p is still an isomorphism over the open
subset of S™X corresponding to n-tuples of distinct points in X. The opposite of
a tuple of distinct points is a subscheme Z with multiplicity n in a single point
x € X: consider the fibre B*(X) := p~'(n-z). A point in B?(X) corresponds to
a subscheme Z C X with underlying set {z} and length n. Any such subscheme is
given by an ideal I C Ox , with dim¢c Ox /I = n. Let m denote the maximal ideal
in Ox . Since dime Ox /I = n, one must have m™ C I. Thus I is completely
determined by the ideal I := I/m" C Ox ,/m". We conclude that if X is smooth
of dimension d, then B?(X) does not depend on either X or z, and that in order
to study B?(X) we may as well assume that X = C? and that z is the origin O.
Here is a description of B for the case of surfaces, i.e. d = 2 and small n: Bj
contains all ideals I C Clx,y] with dim¢ Clz,y]/I =n and m™ C I C m := (x,y).
Case n = 1. The only choice is I = m and Bcl) is a point, as one expects.

Case n = 2. Ideals I correspond to one-dimensional linear subspaces I/m? C
m/m? = C(z,y). Thus B3 = P! = P(TpC?). This can be geometrically interpreted
as follows: if (py,p2) is a pair of distinct points in C? that moves towards the origin
and collides there then the limiting point in S?(C?) only remembers the number

of points that collided and the position where the accident happened whereas the
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limiting in Hilb™(C?) also remembers the limiting direction of the line that passes
through p; and ps.

Case n = 3. Here something interesting happens: there are two qualitatively
different types of ideals. One is easy to find: I, = m2. It is distinguished from the
others by the fact the tangent space Tp Z, of the corresponding subscheme Z, has
dimension 2. The other subschemes are contained in the germ of a smooth curve and
are therefore called curvilinear. Their ideals have the form I = (y+az+ 322, 23) (or
x and y exchanged). All these ideals are parametrised by a line bundle over P*. The
subscheme Z., arises as the limiting point of a sequence of triples that approach
the origin from three different directions, whereas points of the second type arise
as limiting points of triples that move towards the origin along a smooth curve.
The affine bundle is compactified by adding the point Z,, at infinity. In fact, one
can write down an explicit model for B, and a family of schemes parameterised by
B2, consider in P* = Proj(Cla, b, ¢, d, €]) the projective cone over a rational normal
cubic given by the equations ac — b?, ad — be,bd — ¢®. The family Z C B}, x C? is
the zero set of the ideal (ax + by + ex?, bx + cy + exy, cx + dy + ey?).

For higher n, the general picture is this: call Z € B curvilinear, if Z is contained
in a germ of a smooth curve, or equivalently, if dim¢7pZ = 1. Choosing local
coordinates in such a way that the line {y = 0} is the tangent line to Z at the
origin O, we may describe Z by an ideal I = (y + apz? + ...+ a, 12" 1, z". The
set By ™™ of such I is a bundle over P! with fibres 2 C"~'. It is, however, not a
vector bundle, since the transition functions are not linear. In any case, B is

irreducible of dimension n — 1. By a result of Briancon [1], B is dense in BJ.

If n > 2 and dim(X) > 2, the symmetric product S™X is singular along the locus
of tuples that correspond to non-distinct points. On the other hand there is the

following miraculous fact:

THEOREM 2.1. (Fogarty [10]) — If X is a smooth surface then for all n € Ny,
the Hilbert scheme Hilb™(X) is smooth. In particular, p : Hilb™(X) — S™(X) is a

resolution of the singularities of the symmetric product.

This fact is at the base of all the interesting features of the Hilbert scheme of
surfaces. For higher dimensional varieties the Hilbert scheme is not only not smooth
but in general even more singular than the symmetric product. We will prove

Fogarty’s theorem in the next section.

3. The Geometry of Hilbert schemes

3.1. Families of subschemes and the moduli functor. Let X denote a

quasiprojective scheme over C. By definition, a flat family of proper subschemes in
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X parametrised by S is a closed subscheme Z C S x X such that the projection
Z — S is flat and proper. If s € S is a closed point, we denote the fibre of Z
over s by Z,. Given such a flat family and a morphism f : S’ — S, the family
Z' = (f xidx) 1(Z) C 8’ x X is again flat and proper over S’. In this way, we

obtain a functor
(1) Hilb(X) : (Schemes)°? — (Sets)

that associates to S the set of all flat families of proper subschemes in X that are
parameterised by S. Let H be an ample Cartier divisor on X. For any proper
subscheme Z C X the Hilbert polynomial of Z is defined by Pz(n) := x(Oz ®
Ox(nH)). For a flat family Z C S x X the function S 3 s = Pz, € Q[T is locally

constant. This implies that for a given polynomial P, the functor
(2) Hilb”(X):S — {Z C S x X|Z proper and flat/S, P(Z,) = P for all s € S}

is an open and closed subfunctor of Hilb(X'). The dimension of a subscheme can be
read off from the degree of its Hilbert polynomial. The functor Hilb™(X) associated
to the constant polynomial P = n parameterises all zero-dimensional subschemes

of length n.

THEOREM 3.1. (Grothendieck [18]) — The functor Hilb” (X) is represented by a
quasiprojective scheme HilbY (X). If X is projective then HilbY (X) is also projec-

tive.

The theorem then implies that there exists a universal subscheme
(3) Zp C HilbP(X) x X,

flat over Hilb” (X), such that for any Z € Hilb” (X)(S) there is a unique classifying
morphism f : S — Hilb”(X) such that Z = (f x idx)*(Zp).

In the following we will only need the case P = n = const., and the word Hilbert
scheme will always refer to Hilbert schemes of points. Note that Hilb™(X) does not
depend on the choice of the ample line bundle H.

Whenever a scheme or variety represents a functor one gets an intrinsic description
of the Zariski tangent space at closed points. For the Hilbert scheme this takes the

following form:

THEOREM 3.2. (Grothendieck) — Let [Z] € Hilb"(X) be a closed point representing
a subscheme Z C X with ideal sheaf I; and structure sheaf Oz. Then there is a

canonical isomorphism

(4) T[Z] Hllbn(X) = HOmoX ([Z7 Oz)
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PROOF. Let Cle] = C[t]/(t?) denote the ring of dual numbers. A tangent vector
at [Z] : Spec C — Hilb™(X) corresponds to a morphism 7 : Spec Cle] — Hilb™(X)
that restricts to [Z] at the closed point. In the modular interpretation 7 corresponds
to an ideal I C Ox|e] such that the quotient sheaf O = Ox[e]/I is flat over C[e]
and restricts to Oz at the closed point of Spec C[g]. We obtain a commutative

diagram with exact columns and rows:

That the last row of the diagram is isomorphic to the first row is equivalent to the
flatness of O and I. Thus giving a tangent vector amounts to finding an ideal I that
fits into the diagram above. As I always contains eI, it is completely determined
by the embedding of the quotient f/lz > Jz into Oxle]/elz = Ox ® 0z, Of
the two components of this inclusion, the first is the inclusion I, — Ox, the
second a homomorphism ¢t : Iy — Oz. In this way, I determines an element
t € Hom(Iz,O), and, conversely, any such ¢ defines an ideal I and hence a tangent
vector 7. I leave it to the reader to check that the correspondence 7 < t is indeed

linear. O

THEOREM 3.3. (Fogarty [10]) — Let X be a smooth connected quasiprojective sur-
face. Then for each n € Ny, the Hilbert scheme Hilb"™(X) is connected and smooth

of dimension 2n.

PrROOF. Let [Z] € Hilb"(X) be a closed point. We need to compute the di-
mension of Tjz Hilb™(X) = Hom(Iz,0z) = Hom(Iz/I},0z). Apparently, this
is a completely local datum. We may therefore assume for simplicity that X is

projective. From the long exact Ext-sequence associated to

(6) 0—1; —0x —0z—0
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we read off that Hom(Iz,Oyz) = Extl((’)z7 Oz). Now
(7) hom(0z,0z) = h°(Oz) =n,
and, by Serre duality,
(8) ext?(0z,0yz) =hom(0z, 0y @ wyx) = h°(0O7 @ wx) = n.
The theorem of Hirzebruch-Riemann-Roch yields
(9) n—ext'(0z,07) +n = / ch(0z)ch(0z)Vtd(X),

X

where v

is the automorphism on H®*" defined as (—1)° on H?'. The integral
is zero for dimension reasons, because Z has codimension 2. We conclude that
dimg Tz Hilb"™ (X) = 2n for all closed points [Z].

Observe that Hilb™(X) always contains the smooth 2n-dimensional configuration
space of unordered n-tuples of pairwise disjoint points as an open subscheme. Thus
in order to see that Hilb™(X) is smooth of dimension 2n it suffices to show that
Hilb"(X) is connected. We will later give a proof (see Lemma 3.7) by a method

different from Fogarty’s. O

Fogarty’s theorem is the basis of all the nice properties of the Hilbert scheme of

points on surfaces. For higher dimensional varieties much less is true:

COROLLARY 3.4. — Let X be a smooth quasiprojective variety of dimension d and
let [Z] € Hilb"(X) be a closed point such that dimT,Z < 2 for all x € Z. Then
Hilb"™(X) is smooth of dimension dn at [Z]. In particular, Hilb™(X) is smooth for
all d if n < 3.

ProOF. It suffices to consider the case that Z is supported in a single point
z € X. Let d := dimT,.Z < d. We may choose local coordinates z1, ...,z near
x such that zg41,...,2q4 are contained in the ideal I of Z. Let Y C X be the
subvariety defined by J := (z4/41,...,24). Then Y is smooth at  and contains
Z. The ideal of Z in Y is I := I/J. There is an isomorphism of Oz-modules
I/12 2 C{Zgr 11, ..., %4) @ Oz & I/I?. Therefore,

(10) T[Z] Hilb™"(X) = Hom¢e(C(Z4r 41, - - -, Za), Oz) @ T[Z] Hilb™(Y").

By assumption, d’ < 2, hence Hilb™(Y") is smooth at [Z] of dimension d'n. We
obtain: dim Tjz Hilb"(X) = (d — d') - €{(Oz) + d'n = dn. This proves the first
assertion. In general, one always has d’ < n — 1. Hence the assumptions for the

first claim are always satisfied if n < 3. This proves the second claim. O
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REMARK 3.5. — Hilb*(C?) is singular at [Z] = V(m?), where m = (z,y,2) C
Clz,y, z]. For

(11) Tj5 Hilb™(C’) = Homgy, .} (m*/m*, Clz,y, 2]/m*) = Home(m? /m?, m/m?)

has dimension 18, whereas Hilb*(C?) is twelve-dimensional.

Let X be a smooth projective surface. The projection p : =, — Hilb™(X) is flat
and finite of degree n. This implies that A := p.Og

=n

is a locally free sheaf of rank
n. Moreover, A carries an algebra structure, and =,, = Spec(A).

Let A — Ominn (x) denote the trace map for the action of A on itself. The compo-
sition with the multiplication A ® A — A is a quadratic form A ® A — Ogjipn(x)-
Its discriminant vanishes in [¢] if and only if A([¢]) = H°(O¢) is not semisimple,
i.e. if £ has multiplicity > 2 at some of its points. The set

(12) OHilb™(X) := {[¢] € Hilb"(X) | 3z € X : length(O¢ ) > 2}.

is called the boundary of the Hilbert scheme. It is the vanishing locus of the

homomorphism A — A*. In particular, it is a divisor satisfying
(13) [OHib™(X)] = —2¢1(A).

3.2. The Hilbert-Chow-morphism. Let X be a reduced quasiprojective
variety. To any closed point [Z] € Hilb™(X) we may associate a formal sum
Ywex {(Ozz) -z, ie. closed point in the symmetric product S™(X). This defines
the Hilbert-Chow map

(14) p: Hilb"(X) — S™(X),

at least set-theoretically. That p is indeed a morphism can be seen as follows (cf.
[19]): suppose Z € Hilb"(X)(S), and let sp € S be a closed point corresponding to
a subscheme Zy C X. Since X is quasiprojective, there is an open affine subscheme
U = Spec A C X that contains Zy. As the projection p : Z — S is proper,
p(S x (X \U)N Z) is a closed subset in S. Its complement is an open subset V’
with the property that Z; C U for all s € V'. Let V' = Spec B be an open affine
neighbourhood of sg in V. Now Zy := ZNV x U is affine, say Zy = Spec C, where
C is a factor ring of B ® A. Moreover, C' is a projective B-module of rank n, since
p: Zy — V is flat and finite of degree n. The natural surjection B® A — C induces
a ring homomorphism f : A — Endg(C). There is an induced action of A®™ on
C®", the tensor products being taken over C and B, respectively. The subring
of invariant tensor S, A := (A®")%» acts on the rank 1 submodule A,,C' C C®™ of

antisymmetric tensors. This yields a ring homomorphism ¢ : S,,A — Endg(A,C) =
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B and thus a morphism

(15) V = Spec B — S™U := Spec((A®™)°") c S"X.
The construction is functorial in V' and therefore yields a morphism
(16) p: Hilb"(X) - S"X.

Explicitly the ring homomorphism ¢ : S, A — B can be described as follows: Let
Id : Endg(C)®™ — B be the polar form of the determinant, i.e.

(17) ld(ey,...,en) = %coeff(tl ooty det(tier - F taen)),

Then (a1 ® ... @ ayn) = ld(f(a1),-.., f(a,)). We must show that for a C-valued
point [Z] of Hilb"(X) one has p([Z]) = > ,cx ((Ozz.) - . The situation above
simplifies: B = C and C is an artinian factor algebra of A of length n. The
ring homomorphism ¢ factors through S, A — S, C and a homomorphism S,,C —
End¢(A,C). Decompose C' = Cy x ... x C, with local artinian rings C; of length n;
respectively. Then A,,C =2 @, A,,C; and S,C = [[, Q, S, C;, where the product
runs over decompositions n = ¢ + ... + {s. All of these factors act trivially on

A, C except the one corresponding to the decomposition ¢; = n;. Thus ¢ factors

as follows:

(18) SpA — $,C — Q) Sn.Ci — Endc(A,C) = C.

This shows that the closed point z; = (Spec C;)rea appears in p([Z]) with multi-
plicity n;.

DEFINITION 3.6. — Let X be a smooth quasiprojective surface, and let A :=

{nr | © € X} C S"X denote the small diagonal. Let B" := p~!(A) and
By = p~t(np) for some p € X, both subsets equipped with the reduced induced

subscheme structure.

We will refer to B} as the n-th Briangon variety. Any étale morphism f : X —
X' induces an isomorphism B, — B}L(p). Thus all Briangon varieties are non-
canonically isomorphic, regardless which surface X or which point p € X one
considers. In fact one can show that B — A is a fibre bundle in the Zariski

topology.

3.3. An induction scheme. A basic tool to study Hilbert schemes of points
on a quasiprojective scheme X is an induction procedure that allows one to compare
the geometric properties of Hilb™(X) and Hilb"™*(X).

Let Z C Hilb™(X) x Hilb™™ (X)) denote the subscheme whose closed points consist
of pairs (&, ¢£’) such that £ is a subscheme of ¢’. The scheme structure of Z is defined
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by the vanishing of the homomorphism
(19) Pras (=, 1) — O (x)xHilb»+1 (x)xx — Pri3(0=,).

The subscheme Z comes with two projections:

20 i i .
Hilb™(X) 22— 7 —% S Hib" (X

In order to make use of this diagram we need a more specific description of ¢ and
1. We follow here a method due to Ellingsrud and Strgmme [8].
Suppose that £ C ¢’ C X are subschemes of length n and n + 1, respectively. Then

there are short exact sequences

(21) 0— Op — O — O — 0
and
(22) 0— I — Ie — Oy — 0

where O, denotes the structure sheaf of the reduced point x € X, the point where
& and ¢’ differ. It is apparent from (22) that we may pass from £ to &' by choosing
a point € X and a surjective homomorphism A : I¢(z) = I¢/m;Ie — C. Any ¢
can be obtained in this way, and £ determines A up to a scalar. More formally, let
® = (¢,p) : P:=P(Ig,) — Hilb"(X) x X denote the projectivisation of Iz,. We
will construct a flat family of subscheme in X of length n + 1 and parameterised

by P as follows: There is a canonical surjection
(23) a q)*([E,,,) — O]p(l).

Let Y C P x X denote the preimage of the diagonal Ax C X x X under the
morphism p X idx : P x X — X. Consider the surjective homomorphism of sheaves
on P x X:

(24) B: (pxidx) Iz, — (¢xidx) Iz, |y = (pr] &° Iz, )y 225 (pr} Op(1))]y .

n

Its kernel is the ideal sheaf of a family of subschemes of length n 4+ 1. Hence there
is classifying morphism ¢ : P — Hilb" ™! (X) such that ker(3) = (¢ x idx)* Iz, ,,-

We obtain a short exact sequence

(25) 0 — (¢ x idx)*I=

=n41

— (¢ X idx)*Ign — pI‘T O]p(].)|y — 0

of sheaves on P x X. This is the global version of sequence (22). The morphism
(6,9) : P — Hilb™(X) x Hilb""!(X) is an isomorphism onto the subscheme Z.
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We also note that PP comes with a map p : P — X that sends &, ') to the point z,
where £ is modified. The induction scheme takes the final form
Hilb" (X) «—2— P —2— Hilb" ! (X)
(26) o
X

Here is a first application of this construction. The following lemma fills the re-

maining gap in the proof of Fogarty’s theorem 3.3.

LEMMA 3.7. — Let X be a connected quasiprojective scheme. Then Hilb™(X) is

connected for all n > 0.

Proor. Hilb”(X) is a point, Hilb"(X) = X,.q is connected. By induction
we may assume that Hilb"(X) is known to be connected. The fibres of the map
® = (¢,p) : P — Hilb"(X) x X are projective spaces and hence connected. Thus

P is connected. As 1) is surjective, Hilb"™(X) is connected as well. O

The symmetry suggested by diagram (26) is not quite apparent from the construc-
tion of P given above. However, if X is a smooth surface the following holds: The
dualising sheaf we := Eatp (Of,wx) = Eat' (I¢,w) of € is an Og-sheaf of length n.

Applying Hom(—,wx) to sequence (21) we obtain an exact sequence
(27) 0 — we — wg — Op — 0.

Thus to pass from & to £, we have to choose a closed point z in the support
of ¢ and a surjective homomorphism g : wer () — C. This defines a point [u] €
P(wer(x)). Now we can argue as above and show that the morphism ¥ : (¢, p) : P —
= 41) — Hilb" (X)) x

X, where w=,,, = Ext* (0=, +1>wWx) is the relative dualising sheaf of the universal

Hilb™**(X) x X is isomorphic to the canonical projection P(w
family.

From now on let X denote a smooth irreducible projective surface. Let P’ denote
the blow-up of Hilb"(X) x X along the subscheme Z=,, and let £ C P’ be the
exceptional divisor. The ring epimorphism S*(Iz,) — €, [£, induces a closed

embedding P" — P.

PROPOSITION 3.8. — P is irreducible and hence isomorphic to P'.

PrROOF. Let H be an ample divisor on X. For sufficiently large m, the sheaf
B := p*(p.(O=, (mH))(—mH) is locally free, and the evaluation map B — Iz, is

surjective. Let A denote its kernel. Since Iz, is flat over Hilb"(X), the same is
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true for A and B. Hence for each [¢] € Hilb™(X), the sequence
(28) 0—>A|{5}><X —>B|{§}><X —)[5 —0

is still exact. Since X is smooth of dimension 2, the global dimension of O is < 2
and that of Iz is < 1. It follows that Alfe1xx is locally free. By flatness, A is

locally free, too. We obtain a global resolution
(29) 0—A—B—1Izg, —0

with locally free sheaves A and B of rank a and b = a + 1, respectively. The
epimorphism B — Iz, induces a closed embedding P — P(B), and the image is
the zero set of the composite map ®*A — ®*B — Op(1). Thus P is locally cut
out from the smooth variety P(B) by a equations. It follows that every irreducible
component of P has dimension > dim(Hilb"(X) x X)+rk(B) —1—rk(A) = 2n+2.
Let p € P and let [§] = &(p), [¢'] = ¥(p), = p(p) denote the images of p
in Hilb™(X), Hilb""*(X) and X, respectively. The corresponding ideal sheaves,
structure sheaves and dualising sheaves are related by the sequences (21), (22) and
(27). The invariants ¢ := i(§,x) = dim I¢(x), i’ := (&', x) and j' = j(¢',z) :=
dim wer (x) are related by

(30) li—d| <1, j' =i-1.
This can be seen as follows: Tensoring (22) by O,., we obtain
(31) C? = Tor (0., 0,) — Ier(2) — Ie(r) — C — 0

and conclude that —1 < i — 34’ < 1. To prove the second assertion, choose a locally
m

free resolution 0 - A’ — B’ — Isr — 0. Then Iz (z) = coker(4'(z) — B'(x))
and we (z) = coker(B'(X)* LN A'(X)*). It follows that

(32) j' =1k(A") —rk(m*) = tk(B') — 1) —rk(m) =4' — 1.

We stratify Hilb™(X) x X according to the fibre dimension of ®:

(33) Hilb™(X) x X = [[ Hns  with H,,; :={(&,2) | i(¢,2) =1}
i>1

Then & 1(¢,2) = P for (¢,2) € H,,, and similarly, ¥~ (¢/,z) = P/~ = p¥' 2

for (¢',x) € Hpt1,#7. Moreover, because of | —i'| < 1, the inclusions

(34) U (Huypo)C | @7 (Hay)

J[i—i'|<1

hold. This gives the dimension estimate

(35) dim Hyyp1 + (7' — 2) < max{dim H,; + (i — 1) | i —i'| < 1}.
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Using this estimate one can prove the following bound by induction on 7n:
(36) dimH,,; <2n-—2(i—2) foralli>1

The assertion is obvious for ¢ = 1 and is also true for ¢ = 2, since H, 2 C E,, the
latter projecting finitely onto Hilb™(X'). Assume by induction that the assertion is
true for n and consider H, 41 ;. It follows from the inequality (35) that

dmH,pry < (('—2)+max{2n—2G—-2)+(i—1)] —1<i—i' <1}
(37) = 2n+1)—2(-2).

This finishes the induction.

Using (36), we obtain ®~'(H,, ;) <2n+2— (i —1) < 2n + 2 for ¢ > 2. Since any
irreducible component of P must have dimension > 2n + 2, P must be contained in
the closure of ® 1 (H,, 1). This implies that PP is irreducible and therefore isomorphic
to the blow-up P'. O

PROPOSITION 3.9. — The divisor dHilb"(X) C Hilb"(X) is irreducible.

Proor. We will show that d Hilb™(X) is irreducible by induction on n. Clearly,
A Hilb"(X) is empty, and d Hilb?(X) = X. We will make use of the notation and
construction introduced in the proof of Proposition 3.8:
the exceptional divisor E C P’ = P equals |J,~, ® *(H,,;). Every component of E
has dimension > 2n + 1. Since dim <I>*1(Hn;) < 2n + 1 for ¢ > 3, it follows that
& 1(H, ) is dense in E. Since the map H, o +— OHilb"(X) is birational, we may
assume by induction that E is irreducible. Since O Hilb"(X) = «(FE) this proves
the claim. O

THEOREM 3.10. (Briancon [1]) — Let X be a smooth projective surface and let
p € X be a closed point. The varieties By are irreducible and of dimensionn—1. In

particular, they contain the set of curvilinear subschemes as an open dense subset.

PROOF. We proceed by induction and assume that the theorem holds for n. We
may assume that X is irreducible and continue to use the construction and notation
introduced above. The stratification (33) of Hilb"(X) x X induces a stratification
(38) B! x {p} = [[Bn.: . with Bn; = B} x {p} N Hy..

i>2
Now @ '(B} x {p}) = EN® (B} x X) =: E' is a Cartier divisor in the blow-up of
By x X along =, N B x X. Since the blow-up has dimension n+1, every irreducible
component of E’ has dimension > n. We will prove the following estimate by

induction:

(39) dimB,; < (n—-1)—(i—1) fori>3.
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Assuming this estimate for n, it follows that dim ®~1(B,, ;) < (n—i)+(i—1) = n—1
for all i > 3. This shows that E’ is contained in the closure of (B, ») and hence
irreducible. It follows that B;‘“ = ¢(E') is irreducible, too. Moreover, since
¢ : E' — B! is generically an isomorphism, dim(B)*!) < dim(B}}) + 1 = n.

It remains to prove (39). We argue as before:
(40) dim B, 41,0 + (i' = 2) <max{dim B, ; + (i — 1) | | —¢'| < 1}.

For i > 4, we have always ¢ > 3 and conclude by induction that dim Bp41,+ <
(n+1)—id'. If i = 3, we cannot exclude that the case i = 2 appears. However,
U=Y(B,412) N ®71(B,,2) must be a proper subset in ®~'(B, 2) and hence have

dimension < n. We get the desired estimate for i’ = 3 as well. O

4. The Cohomology of Hilb"(X)

Let X be a smooth irreducible projective surface. By Fogarty’s theorem, the Hilbert
scheme Hilb™(X) is a compact complex manifold of dimension 2n. This section deals
with the computation of the cohomology of the Hilbert scheme and, most important,
the additional structure as a module over a certain infinite dimensional Lie algebra
as defined by Nakajima. In the following, all cohomology groups of varieties refer

to cohomology with coefficients in Q (or any other field of characteristic 0).

4.1. Gottsche’s Formula. Since Hilb™(X) is a manifold of complex dimen-
sion 2n, its rational cohomology groups range from degree 0 to degree 4n. The
Betti numbers were computed by Gottsche [14] who gave the following formula
that expresses the Betti numbers of Hilb™(X) in terms of the Betti numbers of X:

THEOREM 4.1. (Gdttsche [14]) —

co 4n o 4
@) 3OS b (X)p 2t = [T JI( - (—1)7p72gm) Ve,
n=0 1=0 m=1 j=0

Here t and ¢ are formal parameters. One of the consequences of this formula is
that the Betti numbers stabilise, i.e. for fixed i and n — oo, b;(Hilb™ (X)) becomes
constant.

It also becomes clear that one should not expect to get nice formulae for a single
Hilbert scheme, but that one should rather look at all Hilbert schemes simultane-

ously. Let us introduce the double graded vector space

(42) H:=@PH =@Pu+, H :=H "(Hilb"(X)).

The right hand side in Gottsche’s formula is also the Poincaré series of an irreducible
module over the so-called Heisenberg Lie algebra. I will explain this in the next

section. As a warm-up consider the following toy example.



LECTURES ON HILBERT SCHEMES 15

ExaMPLE 4.2. — Consider the Lie algebra geven spanned by elements p, g, ¢ that

are subject to the relations

(43) p,adl=c, [p,d]=0, [g,c]=0,

so that ¢ is a central element. geven acts on the vector space M := C[z] via p — a%v
q — z- and ¢ — id. The Leibniz rule for the differential implies that this is indeed
a represensation of g. Moreover, M is an irreducible representation: If V' C M is
a nonzero submodule, and if f = f, 2" + ...+ fo € V a polynomial of degree n,
then V also contains 1 = ﬁp”(f) Applying ¢ sufficiently often, we see that V'
contains all powers of x and therefore coincides with M.

The module M is naturally graded, and its Poincaré series is

(44) S dim M, tr =" t" = (1-t)7".
n>0 n>0

Next, we modify the example slightly: We now assume that p and ¢ are odd ele-
ments. The commutator has to be redefined as [p, q] = pg+ gp. We keep c even and
take the same relations as before. (However, we have to add [p,p] = 0 = [g, q], since
these relations are no longer automatic.) The super Lie algebra goqq spanned by
p, ¢ and ¢ acts on the vector space underlying the exterior algebra M = C & Cz of
a one dimensional vector space C(z) rather than the symmetric algebra as before.
The action is given by p — a%v q — zA and ¢ +— id. The Poincaré series of M is
(1+1).

Both Poincaré series can be uniformly written as (1 —et)~° with ¢ = £1 according

to whether p and ¢ are even or odd elements.

If we now look at Go6ttsche’s formula again, we realise that the factors on the right
hand side have a very similar structure as the Poincaré series in the example. But
instead of one factor there are infinitely many: this indicates that one deals with an
infinite tensor product of modules such as M. And instead of one formal parameter
t there are two, p and ¢, indicating that the graded modules are in fact bigraded.

Nakajima constructed an action of an infinite dimensional Lie algebra on H that
realises all these features. We will first discuss the abstract algebraic construction

of the Lie algebra and then Nakajima’s geometric representation of it.

4.2. The Heisenberg Lie algebra and an irreducible representation.
By definition, a super vector space is a vector space H together with a Z /2-grading
H = H*" ¢ H°d, If H and H' are super vector spaces, Hom(H, H') and H @ H'
etc. inherit Z /2-gradings in a natural way. The symmetric group S, acts on H®"

by permuting the factors of a product of homogeneous elements with an additional



16 MANFRED LEHN

sign:
(45) W(hl X ®hn) = (—].)Eh,r—l(l) ®...®hw—1(n),
where & = >, )or) [l - |hy| and |hi| € Z/2 denotes the parity of h;. This

affects the definition of the symmetric and the exterior algebras of a super vector

space. As a consequence
(46) S* (Heven ® Hodd) — S*(Heven) ® A* (HHOdd).

Here II is the parity change functor: it makes H°d even and H®¥*" odd.

Let H be finite-dimensional super vector space over QQ with a non-degenerate even

symmetric bilinear form (—,—) : H x H — Q. Evenness of the form means that
Hever | Hod4 and symmetry means that
(47) (. 8) = (=118, o)

for homogeneous elements of degree |al,|3| € Z /2.

A typical example for such a situation is the cohomogy ring H := H*(X,Q) of a
compact manifold X of even real dimension. The pairing in this example is the cup
product pairing [ < @U 3. The cup product itself is not needed for the moment.
To the datum (H, (—, —)) we associate a so-called Heisenberg Lie algebra as follows:

Define a Lie bracket on
(48) b= HIt,t '] @ Qe
by [c,u] := 0 for all u € h and

(49) [af(t),Bg(t)] := (a, B) res, fdg-c

for all a, 3 € H, f,g € C[t,t~1]. This bracket is super skew-symmetric, since the
residue of d(fg) vanishes so that the Leibniz rule implies that res; f dg = —res; g df .
Since c is central by definition, the bracket satisfies the Jacobi-identity.

It is convenient to introduce the variables «,, := at™ for « € H. Then the relations

can be written as [a,,c] = 0 and

(50) [, Bin] = 1 0n,—m{a, B) c.

Note that here and elsewhere whenever we are concerned with possibly odd elements

x and y, the Lie bracket of x and y will be super skew symmetric, i.e.

(51) [,y = —(=1)l*F Iy, 2],

If we choose a homogeneneous basis o' of H with dual basis 3°, then each pair o,
ﬂin spans a Lie algebra isomorphic to either geyen O godq in example 4.2 depending

on whether « is an even or an odd element.
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The next step consists in constructing a highest (or rather: lowest) weight repre-
sentation of h. Let I C U(h) be the left ideal in the universal envelopping algebra
of h that is generated by all elements of the form «,, with n > 0, and the element
c—1.

Then the quotient V := U(h)/I is as a representation of h. It is generated as a

representation by the residue class 1 of 1 € U(h). By construction, we have
(52) a,1 =0, for alln >0, and c.1 = 1.

We will refer to 1 as the vacuum element. Let h = ¢ 1H[t"!]. The Poincaré-

o~

Birkhoff-Witt theorem implies that V' is isomorphic as a vector space to U(h_) =

S(h-).

A good way of looking at V is the following. Using the basis a* of H and its

dual basis b as above, V may be considered as the underlying vector space of

the (super) polynomial ring in the variables o, i = 1,...,dim(H), n € N. On
by

for m € Ny. The same reasoning

these monomials the action of h is given as follows: ¢ acts as the identity, o’
J o)
—m> 7

m

multiplication with o’ ., and 3}, acts as m

as in example 4.2 shows:

LEMMA 4.3. — V is an irreducible h-module

The Heisenberg Lie algebra can be endowed with an additional Z-grading by weight.
We declare wt(ay,) := —n and wt(c) = 0. It is easy to check that the Lie bracket is
homogeneous, and also that the ideal I C U(h) is homogeneous. Hence V- = U(h)/I
inherits a grading, and the action of h on V' is homogeneous. In order to compute
its Poincaré series, all we need is to remember the fact that S*( W;) = Q S*(W;)
for any family of vector spaces. Therefore there are isomorphisms of graded vector
spaces, where I have put in a formal variable to indicate the weight of the appearing

vector spaces:

(53) @ann — g* (@ qu> — ® S*(Hevenqm) ® ® A*(HOddqm).
n>0 m>0 m>0 m>0
Passing to dimensions, we obtain the following formula for the Poincaré series:
) . 14+ qm dim H°44
54 S dinn(v)g" =TT (e
n>0 m>0 (1 —qm)

Assume now in addition that the Z/2-grading of H comes from a Z-grading H =
@, H'. We will denote the degree of a homogeneous element a € H as |a| € Z.
Note that this reinterpretation of the symbol |a| does not affect any of the formulae
above. Then V becomes a bigraded vector space, V = @M- V™' the bidegree of

a_, being (n, |a).
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A straight-forward extension of the calculation just completed gives
(55) > dim(V™)g"p' = [ [J - (~1yp/gm)= e,

n>0 1 m>0 j
Apply the construction above to the following setting: Let X be a smooth projec-
tive surface and let H := H*(X,Q)[-2]. Let (o, ) := — [ a U (. (By definition,
the pairing is zero if the degrees of @ and 8 don’t match. The additional sign was
thrown in in order to keep future formulae free from signs.) Let b be the Heisen-
berg Lie algebra constructed from (H,{(—, —)) and let V denote the representation
constructed above. Then V has the same Poincaré series as the joint cohomology
H of all Hilbert schemes. In particular, V and H are isomorphic as bigraded vector
spaces. Of course, this in itself doesn’t mean much. The question arises: Is there a
natural isomorphism V = H? This was answered positively by Nakajima [32] and
Grojnowski [17].

4.3. Nakajima’s operators. As before X is a smooth irreducible projective
surface, H := H*(X,Q)[-2] and H := @ H*(Hilb" (X, Q)[-2n]). To keep formulae
and diagrams readable, we will denote the Hilbert scheme by X[ := Hilb"(X).
Let n,¢ > 0. Inside the triple product X[ x X x X! consider the incidence

variety

(56) Z =27 ={(¢,2,8) | £ €, p() = p(€) +na}.

Thus Z is made up from all triples where £ is a subscheme of &', and £ and & differ
only at the point z. Apparently, Z generalises the incidence variety from section
3.3.

We may decompose Z into strata ZoU...U Z; with Z; consisting of all triples such
that h°(O¢ ) = 1.

If 2 and ¢ have disjoint support, £ = £Un for some n € X™ with support in z. In
fact, Zp is isomorphic to an open subscheme in X4 x B", where B" is the (n+1)-
dimensional Briancon scheme introduced in section 3.2. Similarly, Z; is isomorphic
to an open subscheme in X1 x B*+1 Tt follows that dim(Zy) = 20 +n + 1
and dim(Z;) = 2¢ + n. With more care one can show that all other strata have
dimension < 2¢ + n. To the best of my knowledge, we still do not know whether
Z is irreducible or not. However, Z; is in the closure of Zy, and certainly Z has
no other component of dimension > 2¢ + n. This suffices for the present purpose.
The fundamental class [Z] is an element of degree 2( 4+ n + 1 in the Chow group of
Xlnl x X x x4,

Following Nakajima [32], we define an operator a_,, on H with a_,, : Hf — H‘*"™ for
any a € H and n € N as follows. Let p; denote the projection from X [fIx X x X[¢+7]
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onto its i-th factor, i = 1,2,3. For y € Hf = H*(X[E])[—%] let

(57) a—n(y) == PD ™ pr((p3(a) Ups(y) N [2)),

where PD denotes Poincaré duality. It is clear from the construction that a_, is
homogeneous of bidegree (n, |af).

For positive indices a,, can be defined by reading the same diagram backwards. I
prefer to define a,, as the operator adjoint to a_, with respect to the pairings on
H* given by (z,y) = (—1)* Jxw x Uy. Note that this convention tallies with our

1].

definition for the pairing on the cohomology of X = X[ Finally aq is set zero.

Then Nakajima’s main result is

THEOREM 4.4. (Nakajima [32])— For all o, € H and n,m € Z,

(58) [, B = n0n,m{c, B)idp.

We give a proof of this theorem in the next section.

We can rephrase the theorem by saying that the Heisenberg Lie algebra h con-
structed in the previous section acts on H via the geometrically defined operators
an. As this action is also faithful our otherwise irresponsible double usage of the

symbol a,, as an element in h and as an endomorphism on H is justified.

PROPOSITION 4.5. — V 2 H as representations of b.

PRrROOF. The zeroeth Hilbert scheme is a point representing the empty sub-
scheme of X . Its cohomology is generated by the unique element 1 :=1 € HO(X[O]).
It is clear for dimension reasons that a,,1 = 0 for all n > 0. Sending the generator
1 € Vtol e H defines a homomorphism f : V — H. Since V is irreducible f
must be injective. It follows that the dimensions of the homogeneous components
of V' give lower bounds for the Betti numbers of the Hilbert schemes. But we have
already seen that by Gottsches formula these numbers are equal. It follows that f

is an isomorphism. O

As I learned from Marc de Cataldo in this conference, the use of Géttsches formula
can be avoided altogether by the following argument. Consider the Leray spectral
sequence for the constant sheaf Q and the Hilbert-Chow morphism p : Hilb™(X) —
S*X:

(59) B} = HPT(Hilb"(X)),

where the E» term is given by @, ®,cy S (H), and a runs over all partitions
a = (1*12*2..) of n, i.e. n = ), a;i. Gottsches formula is equivalent to the
degeneracy of this spectral sequence. However, and this is de Cataldo’s point:

we need not know that the spectral sequence degenerates. The Betti numbers of
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the Hilbert schemes can only become smaller than the Betti numbers of E5. On
the other hand, Nakajima’s theorem shows that the same numbers provide lower

bounds. Thus we must have degeneracy of the sequence and V = H.

One important consequence of the isomorphism V = H is that we can write down a
natural basis for the cohomology of the Hilbert schemes that also has a geometrical
interpretation. Let o’ be a basis of homogeneous element in H. Then H has a basis

of elements

(60) S |

—n1 —MNg~?

where a factor oﬁn]_ should not show up twice if the degree of a'/ is odd.

4.4. Proof of the Nakajima relations. We will sketch a proof for the com-
mutator relations (58). The most interesting case is of course the bracket for op-
erators a,, and B_,. The cases where n +m # 0 are treated essentially in the
same way, except that they are simpler: one never needs seriously compute an
intersection product, dimension arguments suffice.

We want to calculate the two operators a,(3_, and S_,a, on H, or rather their
difference.

Geometrically speaking, the operator «,3_, first adds an n-fold point somewhere
and afterwards subtracts an n-fold point, perhaps somewhere else. In contrast,
the operator f_,a, first subtracts an n-fold point, and then adds an n-fold point,
possibly a different one and possibly somewhere else. Heuristically, it is evident
that the second procedure is more difficult to realise geometrically: in order to
subtract something of length n from a subscheme £ C X, the local ring of £ should
first of all have length > n at some point x of its support. This is not so in the first
case: we can always at least subtract what we added in first.

Consider the product variety
(61) Vo= X X ox XTI X % X1

and let p23 etc. denote the projection onto the product of the first three factors

etc. The cycle

(62)  wy = pross (a2 p3as[279) € Azipa(X1 x X x X x X1
defines the operator a,3_,:

(63) anBn(y) = (—1)"PD (pr. (v3(c) Up(8) Up;(y) Nwy).
Geometrically, w, is supported on the scheme

(64) Wi 1= praas(pras (Z57™) N pgs (Z2957)).
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Set-theoretically, W, is easy to describe:

(65)  Wii= {29,030 €CnDCpm) =€) +nw=p(C) +ny} .

We can immediately identify two irreducible components of W of dimension 2¢+2:

the first is the closure W' of the image of the rational map
(66) X B"x B" — — —» X x X x X x XU

given by (1,7",7") = (nUn’, p(n'), p(n"),nUn") and defined on all pairwise disjoint
triples (n,n’,n"). The second is the diagonal

(67) A={(& 2,8 ce X reXtcXxlxX xXx X,

A dimension argument essentially based on Briangon’s theorem shows that any
other component of W, if there is any at all, must be of dimension strictly less
than 2¢ 4+ 2 and therefore cannot support a cycle class of this degree.

The cycle w4 is used to compute the composite operator «,,3_,. For the compo-
sition in the opposite order we proceed analogously.

Consider the product variety

(68) Vo= X% X x X x x x4

and the cycle

(69)  w- = proas (P1oalZ " piss[Z250) € Azera(X1) x X x X x X1,
Geometrically, w_ is supported by the variety

(70) W = praas (P13 (Z257) Npags (Z9077).

The latter has the following set theoretic description:

(1) W= {(62,0,0 |30 5 €26 Cp(€) = pl0) + v, p(C) = p(6) +ny}

As predicted by our heuristic statement at the very beginning, there is only one
component of dimension 2¢+ 2, namely the variety W' defined above, and any other
component of W_, if there is any, must be of dimension strictly less than 2¢ + 2.
Thus we must have wy = ay[W’'] + N[A] and w_ = a_[W] for some integers
a_,a4, N. To compute these coefficients, it suffices to localise the geometric setting
at a generic point of W’ and A.

A generic point of W’ has the form (nUn',z,y,nUn") where n, ' and " are
disjoint, and n" and n"” have length n and are supported at disjoint point z and
y, respectively. It is not difficult to check that the intersection of pf213ZZ’Z+” and
Paix Z5t™ in Y, is transverse above (n Un',x,y,n Un") and yields ay = 1, and

that a_ = 1 for similar reasons.
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This shows that wy —w_ = N[A]. Note that the structure of this equation already
proves (58) except for the precise value of the coefficient that appears on the right
hand side in (58). This factor was first computed by Ellingsrud and Strgmme [8]
and then by a quite different and very interesting argument by Nakajima [33].

It remains to compute N: again we localise the geometric setting at a generic
point of the diagonal, i.e. a point of the form (¢, x, x, &) where x is disjoint from &.
Consider a point (§,z,n,z,£) in Y above (£, z,x,£). Up to an etale map, we may
replace X+ near (&, 2,1, z,€) by X x X" and Z6"+¢ by X[] x B etc. In this
way the whole situation becomes a product of X! with a much simpler scenario
corresponding to the case £ = 0. In other words, IV does not depend on ¢, and we
may assume without loss of generality that ¢ = 0.

The problem is reduced to the following: Let i : B® — X[ denote the natural
inclusion and p : B®” — X the map that sends £ to its support. Moreover, let
j =(i,p): B"l = X[ x X be the embedding as graph of p. We need to compute
the intersection of j(B™) x X and X x j(B™) in X x X[ x X, or more precisely,
the coefficient N in

(72) prs. (j.1i(B"] x [XLIX] x j.[B"]) = N[A],

where [A] is the class of the diagonal in X x X and p;3 is the projection from
X x X[ x X to X x X. Intersect with pr?)_l(p) for some point p € X and get

(73) pu (:[B"].[X] x [B}]) = Nlp],

where p; is the projection from X x X[ to X. This shows that NV is the intersection
number of [B"] and [B] in X,

THEOREM 4.6. (Ellingsrud-Stromme [8]) —

(74) [B"1.1B;] = (~1)"'n.

PROOF. Recall the maps Hilb"(X) <= P -2 Hilb" ! (X). As before, let
E C P denote the exceptional divisor of the blow-up ® = (¢, p) : P — Hilb™(X) x X.
Moreover, let B’ := ¢='(B™*!) and B}, = ¢~ (B}*") for some closed point p € X.

Then one has

(75) GBI =+ 1)[B] . o[BI = (n+1)[B))

(76) [E]l.¢*[B"] =n[B] , [E].¢"[B,]=n[B}]

The first of these identities follows easily from the fact that ¢ : P — Hilb"™ is a

generically finite map of degree n+ 1. Moreover, it is clear that EN¢~1(B") = B'.
Hence one needs to determine the factor \ in [E].¢*[B™] = A[B’]. This can be
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done by an explicit calculation in local coordinates for Hilb"™(C?) near the point
{=V((y,2")) in B™.
We can now prove the theorem by induction on n and assume that it has been

shown for n.

(1) =BTBTY = et B (B
(7®) = [B'.[B}) = L[E].¢"[B"].[E].6"[B}]
(79) = CEUER (R,

where in the last line we have used the induction hypothesis and [F] denotes a
generic fibre of ¢ : P — Hilb™. Such a generic fibre equals the surface X blown
up in n distinct points. Therefore [E]*.[F] = —n. It follows that [B"*'].[B+!] =
(=) (n +1). ad

5. Vertex algebras

The irreducible h-representation V that we constructed in section 4.2 carries natu-
rally the structure of a vertex algebra. In fact, it is one of easiest nontrivial vertex
algebras around. By Nakajima’s isomorphism V — Hj this vertex algebra structure
is transplanted onto the cohomology of the Hilbert schemes. The impotant point is
of course, that this is not just an empty formal procedure, but that certain features
of the vertex algebra are reflected in the geometry, and conversely.

In the little time and space available to me in these lectures I cannot give more than
a very superficial introduction to vertex algebras. I recommend the text books of
Kac [20] and Frenkel and Ben-Zvi [11]. However, I would like to introduce just as
much of some basic notions as to give some idea why the language of fields might
be a good way of organising the algebraic structures that have appeared in the
previous section and will be used in the next.

Vertex algebras are (usually infinite dimensional) vector spaces with a distinguished
element 1 (the so-called vacuum element) and a countable number of products
—(n)— : V@V = V referred to as the n-th product, n € Z. None of these products
is commutative or associative, and the failure is measured in terms of all the other
products. A good way to organise these data is in terms of endomorphism valued
power series: For a fixed a € V, there is an endomorphism a(,)—: V — V for each

n € Z, and we put all of them into formal sum

(80) a(z) =Y _agyz"""" € End(V)[[z, 27 ]].
nez
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The unusual indexing is introduced so as to give a(,) = res. z"a(z). In this way,

we get a map, the so-called state-field correspondence,
(81) Y :V = End(V)[[z,27"], aw a(2).

The first vertex algebra axiom on Y requires that for any a and b in V' the formal
V-valued power series a(z)b = EnEZ a(n)bz’"*l should have a finite pole order,
i.e. we require that a(,)b = 0 for n > 0. In this case, the power series a(z) is called
a field. The set of all fields is a linear subspace QEnd(V) C End(V)[[z,27"]].

Here is an example: let V denote the representation of h that we discussed in the
previous sections. For each a € H, the Lie algebra elements a,, n € Z, act on V,
and may be organised into an End (V') valued formal power series. The grading of

—n—1

V' and homogeneity of the a,, imply that ) ., anz =: a(z) is a field for each
acHCV.

We must resist the temptation to multiply two fields

(82) a(z)b(z) z Z( Z a(m)b(n)> 2P

PEZ \m+n+l=p
for the inner sum is infinite, and the expression does not make sense. However,
because of the field property of a(z) and b(z) the term a(,—,,—1)b(,)c vanishes for
any given ¢ and n > 0. This is not so when n becomes very negative. In this case
a(p—n—1) becomes zero when evaluated on a fixed vector, except that in the present
situation its argument changes as well, and we are lost. In quantum field theory
there is a radical cure for this: Simply let the a,’s act first. The normal ordered

product is defined as follows
(83) ta(2)b(z) s = a(2)-b(z) — (=)IMPb(2)a(z)4,

where a(z)y = Y o0z "t and a(z)- = Y o a@yz "' are the principal
and the holomorphig part of a(z), respectively. It is not difficult to see that this
definition makes sense and that the normal ordered product of two fields is again
a field. It is less obvious that to make such a definition really is a reasonable thing
to do. More generally, we define an n-th product of two fields a,b € QEnd(V') for
any n € Z by

(84) a(2)(mb(2) := res,, (w"(l— 2)ma(w)b(z)— (—1) el (=) (1— %)"b(z)a(w)) :

where (1 —2)™ = 1 —n% + (3)(%)* + ... etc. Again this is well-defined, and
a(2)(n)b(2) is again a field. One can check that the (—1)-product of two fields
is the normal ordered product. If (V,Y,1) is a vertex algebra then (a(,)b)(z) =

a(z)(n)b(2).
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Let us go back to the h-representation on V. Choose a basis a' of H and a dual
basis b® with respect to the symmetric bilinear form (—, —). To each element a € H
we have associated a field a(z). We may therefore consider the field

85 L(z):= L2772 .= 1 cat(2)b(2) .

(85) (2) % 5 Z (2)b*(2)

If one is not accustomed to this kind of calculation it might take a while to verify

that the coefficients L,, of the field L(z) satisfy the following commutator relations

n3

-n .. .
3 sdim(H)idy,
where sdim(H) := dim H*"*" — dim H° is the super dimension of H. The com-
mutator relations (86) are characteristic of for the Virasoro algebra.
The Virasoro algebra is defined as follows: Witt := Der(Q[t,¢ !]) is the Lie algebra

of vector fields on a punctured disc. It has a basis ¢, := t_”_1% that satisfies the

(86) [an Lm] = (TL - m)Ln+m + 6n,7m

Lie bracket relations [(y, (] = (n — m){p4m. Apparently, Witt is a perfect Lie

algebra and therefore has a universal central extension
(87) 0 — Z — Vir — Witt — 0.

It turns out that the centre of Vir is one-dimensional, say spanned by an element
¢, and that one may choose lifts L,, € Vir of {,, € Witt in such a way that the Lie
brackets for the L, have the normalised form

(88) [Loy L] = (0 — m) Lysm + 5n,,m”31—;”c.

Comparing this with (86), we may express the meaning of (86) by saying that there
is a natural representation of Vir on V where the element ¢ acts as a scalar. This
scalar is often referred to as the central charge of the representation. In the present

case it is sdim(H).

Assume now that H has in addition to its grading and its symmetric pairing a ring
structure U : H ® H — H with unit 1 and a trace map ¢t : H — C such that
(a, ) = t(aUB). Let A : H - H ® H be the map adjoint to the cup product
with respect to the pairing (—, —). For instance, A(1) = Y a' @ b*, where (a') and
(%) are dual bases as above. The element e := Y. a' U 3' € H is called the Euler
class of H. It is the image of 1 under the composite map H Delte, oo 2 H.
Furthermore we have t(e) = sdim(H).

The following construction generalises the definition of the field L(z) above: For
any v € H write A(y) =37 @v"

(89) LG = Y L= 33 () -

neZ 7
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This defines endomorphisms L, (y) € End(V) that satisfy the twisted Virasoro

relations

n3

—n

For @ = 3 = 1, one gets back the old relations (88). We will need these endomor-

(90) [Ln(@), L (B)] = (n = m) L gm (@ U B) + On,—m

phisms in the next section. Explicitly, one has

(91) La(y) = % SS v,

i VEZL
for n # 0 and
(92) Lo =>4,
i veN
I leave it as an exercise to check that
(93) [Ln(a)7 ﬂm] = _m(a U ﬁ)n—i—m

6. The ring structure

Nakajima’s beautiful theorem gives us a little bit more than just an explicite iso-
morphism of vector spaces V — H. It also allows one to effectively compute the

cup product pairing on H". Since «,, is adjoint to «,,, one has

i1 i J1 Jt
(@2, ...al, 1,02 ..ol 1)
_ i s i1 Ji Jt
= (a?,,...a 1,a%, ol .. .ok 1)
¢
_ i g 12 iy i1 J1 ~j Jt
= E N10ny m, (@, ") (@, oo, 1al, ot A et 1),
=1

Inductively, we may reduce everything to (1,1) = 1.
However, so far there is no relation between the representation of fh on H and the
additional ring structure on H", given by the cup product. To understand this ring

structure is the goal of this section.

6.1. Multiplication operators. The basic idea is to think of the cup product
in terms of multiplication operators and to relate these with Nakajima’s operators.

Recall that Hilb™(X) parameterises a universal family
Z,C Hibb"(X)xX —— X
(94) |
Hilb™ (X)

If F is a locally free sheaf on X, then FI"l := p, (0=, ® ¢*F) is locally free on

En

Hilb™(X) of rank n - rk(F'). Sheaves of this type are called tautological sheaves.
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Applying this construction to the trivial sheaf weobtain the sheaf of algebras A =
O encountered before.
Following Li, Qin and Wang [28] one can generalise this construction from elements

in K-theory to cohomology classes. For each a € H let

(95) ol = p,(ch(0=, ) U ¢* (td(X) U a)).

With this notation the Grothendieck-Riemann-Roch theorem says that
(96) ch(FI™) = (ch(F)).

Define operators m(«) € End(H) by

(97) m(a)|s (y) = o Uy,

Note that even if a is homogeneous, m(«) is not so. As a consequence, the oper-
ator has weight 0 but is not homogeneous in the cohomological direction. Let the
homogeneneous component of bidegree (0,7) be denoted by m(«),;. For example,

m(1)o|m, is the multiplication by rk(.A) = n, and m(1),

g~ 1S the cup product with
c1(A) = —1[0Hilb™(X)]. This operator is of particular importance and deserves

its own symbol
(98) 9 :=m(1)y = ¢ (0.

Up to a factor —%7 0 describes the intersection of a cohomology class with the
divisor  Hilb™(X).

Finally, let ¢(F) € End(H) be the endomorphism with ¢(F)[g. = c¢(F™)U — for a
locally free sheaf F on X.

Every element in H is a linear combination of elements of the form

(99) x=a", -...a", 1.

Then

(100) m(B)(z) = 21: a, o m(B).a, ] e, 1
(101) ]7+ a oot m(B)1.

The last summand is zero, since Zg = @ so that m(8)1 = 0. We can compute

m(B3)(x) if we understand the commutators [m(3), a_,].

THEOREM 6.1. —

(102) m(3), 0] = Y~ (add)(BUa) 1.

v>0
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For the special case 3 = ch(F) this theorem can be found in [24], for arbitrary f it
is due to Li, Qin and Wang [28]. Theorem 6.1 reduces the calculation of [m(5), —]

to the special case [9, —]. The proof of the theorem is in fact quite easy:

PROOF. Recall the incidence scheme P studied in section 3.3 with the maps
Y : P — Hilb" " (X), ¢ : P — Hilb"(X) and p: P — X. Passing from the sequence
(25) of ideal sheaves to structure sheaves we obtain the global version of sequence
(21):

(103) 0 — pr; Op(1)|y — (¢ xidx)"Oz=,,, — (¢ xidx) Oz, — 0.
Applying p.(ch(—) U pri (td(X) U B)) to this sequence we obtain the identity
(104) Bt — g7 Bl = ch(Op(1)) U p* 3
in H*(P). Now, by definition, a_;(y) = ¥.(p*a U ¢*(y)). It follows that
m(B),a]ly) = BT uv.(prauey) — (~1) Nl (prau et (B Uy))
= (@B = g ) Upra U oy)
= w.(chOs()up (BUA)UGY),

where we have used the identity (104) in the last line. From this one can already

deduce what Li, Qin and Wang called the transfer property:

(105) [m(B), ] = [m(1), (BUa)].

Moreover, if in the calculation above we take 5 = 1 and the degree 2 part of m/(1),

we get

(106) 9,01)(4) = ¥ (c1(O5(1)) U p*a U 6°y),
and more generally,

(107) (ad0)" (a-1)(y) = . (e (Op(1)” U pa U 6"y),
If we reinsert this expression into (105), it follows that

(108) m(3),0] = 30— (add) (BU) 4

v>0

O

Let L be a line bundle on X. Let ¢(L) € End(H) denote the operator, that is the
multiplication with the total chern class ¢(L™) of the tautological rank n bundle
L™ on H". Note that ¢(L) is invertible.

THEOREM 6.2. [24]—

(109) c(Lya_ie(L)™ = (e(L)Ua) 1 +[0,a_1].
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The proof is very similar to the proof of theorem 6.1 and will be omitted.

The following theorem is the key to the ring structure of the Hilbert scheme. The
proof is too long to reproduce it here. In the theorem, K € H° = H?(X) is the
canonical class of the surface. Moreover, L, () is the twisted Virasoro operator as
defined by equation (89)

THEOREM 6.3. [24] — Let n € N. Then

1)

(110) [0,a_,]) = —nL,(a) + n(nT—(a UK)_p.

Observe that due to the relations (91) and (92), the right hand side in the theorem
is a quadratic expression in Nakajima operators. In particular, iterated applications
of the theorem will compute all expressions of the form (ad )" ().

Here are some immediate consequences of theorem 6.3:

COROLLARY 6.4. — 1. [0,a_1] = —L_4(a).
2. For alln € N: (ad[0,1_1])"(a—1) = (-1)"nla_,_1.

PROOF. The first statement is only a special case of the theorem, and the
second follows from iterated applications of the identity (93). O

This corollary has in turn important applications: since any Nakajima operator a_,
can be written as a linear combination of words in the symbols @ and (3_1, theorem
6.1 is, in principle, strong enough to compute any of the commutators [m(3), a_,]:
firstly, one has to rewrite a_,, as such a linear combination. Secondly, using the
fact that m(3) must commute with 9, since both are multiplication operators in
the graded commutative ring H", express the commutator with m(f3) in terms of
commutators with 9. Use theorem 6.3 to compute these. In practise, this is difficult
to carry out. However, one can turn these instructions into a rigid algorithm that

allows to compute any cup product in H".

COROLLARY 6.5. — H = 9(H) + H_,H.

COROLLARY 6.6. — Let L be a line bundle on X. Then

(111) Z c(LMYg™ = exp (Z wc(L)_mqm> 1
n>0 m>o

PROOF. The unit 1ype(x) € H* equals 45 (1x)}1. Hence the left hand side in
(111) equals

(112) > e(L)g™ = ¢(L) exp((1x) 1)1 = exp(c(L)(1x)1¢(L) 'q)1.

n>0

By theorem 6.2 and 6.3,

(113)  e(L)(1x)1e(L)™! = e(L)—1 + [0, (1x)-1] = e(L)—1 + L(1x)_1 =: A.
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We must show that

(114) exp(dn)1 = exp(( 0 T (L) g

m>0

It suffices to show that the right hand side satisfies the differential equation

0x
115 — = AX
(113) "
with initial condition X(0) = 1. I leave the verification to the reader. O

6.2. The affine plane. The affine plane is an ideal example for the study of
the cohomology ring of the Hilbert scheme because it has trivial cohomology. There-
fore, there are no complications arising from the topology of C?, and H* (Hilb™(C?))

becomes an essentially combinatorial object.

REMARK 6.7. — However, there is one problem with C2: it is not projective. There-
fore, we have to modify our presentation of Nakajima’s work. I will only briefly
indicate the necessary changes: if X is a smooth but not necessarily projective sur-
face then the projection from the incidence variety Z in (56) to the factor X[t+n]
is still proper. Therefore the operators a_,, are well-defined for cohomology classes
o € H*(X). However, the projection to X! is not proper. In order to define a,,
for n € N one needs to take o from cohomology with compact support. In this way,
one can build up a Heisenberg Lie algebra h = ¢t ' H*(X)[t '] ®tH}(x)[t] that acts
on H. It remains true that H is isomorphic to S*(t=*H*(X)[t~]).

Let X = C?. Then H = H*(C?)[2] is is one-dimensional. For better readability,
we write p,, := (1x)_p. Thus
H = @D H*(Hilb"(C*))[2n]) = Qlp1, p2. b3, - - ]-
n>0

Here p,, has weight n and degree —2. For example,

H*(Hllb4 ((Cz ))[8] = Q<p4117p%p27p1p37p§7p4>7

and dim H*(Hilb™(C?)) equals the number of partitions of n.

Let Q[S,] denote the group ring of the symmetric group. Every permutation 7

admits a decomposition 7 = z1 - ... - z5 into disjoint cycles z; of length \; with
A1 > ... > As. We refer to the partition A = (A, -+, \s) of n as the cycle type of
.

The center ZQ[S,] of Q[S,] consists of all elements that are invariant under the
conjugation action of S,. It has a -basis consisting of elements ey := > | 7,

where the sum runs over all permutations 7 of cycle type A.
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Consider the map ® : Q[S,] — Q[p1,p2,...] which sends a permutation 7 of cycle

type A to the monomial

1
(I>(7T) = ﬁph et P

Then ® induces an isomorphism of vector spaces

®: ZQ[Sn] — H' =Qlp1,p2, - Jny €1+ H miA)! (%)m,m 7
ieN
where m;(A) = [{7 | \; = i}|.

Both ZQ[S,.] and H* = H*(Hilb"(C?))[2n] are rings. However, they cannot be iso-
morphic for trivial reasons: ZQ[S,,] has a Q-basis of idempotent elements, whereas
H" has only one idempotent: lgiyp»(c2). Nevertheless, these two rings are curiously

related:
PROPOSITION 6.8. — &(3_ .o sgn(m)m) = c(OM).
In other words, ® sends the alternating character to the total chern class of the

tautological sheaf Ol"l = A on Hilb™(C?).

PROOF. It is a combinatorial exercise to see that
[0)) Z Z Sgn(ﬂ')ﬂ'qn = exp (Z wp qm>
m m '
n>0rweS, m>0
By corollary 6.6, the right hand side equals ) -, c(oygn. O
The action of & = ¢; (O")U— on H = C[py, p2, . . .] can be described as a differential
operator. The following proposition is a consequence of theorem 6.3:

PROPOSITION 6.9. [24] —

-1 o 0
T o o

As Frenkel and Wang [12] pointed out, the differential operator on the right hand

side is very similar to the following operator introduced by I. Goulden [16]:

1 g 0 1 7]
G =z n+ma-a_ A o nH/m .
2 n%;)nmp " B O 2 n;o(n—l-m)p P

Let 7 € ZQ[S,] denote the sum of all transpositions. Then Goulden’s operator
describes the multiplication with 7 in ZQ[S,,] as differential operator the same way

as d describes the multiplication with ¢;(O), namely:
(116) O(1-y) = G(2(y), a(OM)ud(y) =a(2(y))

To see this observe the following: if a transposition (ij) is composed with a permu-

tation m = 21 - ... z; two things can happen: either ¢ and j belong to two different
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cycles zi, then as a result of the multiplication the two cycles are merged. For

instance
(117) (14) - (123)(45) = (12345).

Thus two cycles of length n and m are replaced by a cycle of length n +m. This is
accounted for with the correct multiplicities by the first half of G. If on the other

hand ¢ and 7 belong to the same cycle, then this cycle will will be split, as in
(118) (14)-(12345)=(123)(45).

Thus one cycle of length n + m is split into two cycles of length n and m. The
second half of G takes care of this possibility.

As we already know that ®(—7) = ¢; (O™), the similarity of the differential oper-
ators 0 and G allows only the following conclusion: in order to obtain the correct
cup product in H", the multiplication in ZQ[S,] has to be modified in such a way
that only multiplications as in (117) remain nonzero. This can be achieved by
introducing an appropriate grading.

Define the age of m € S,, as the minimal number k needed to write = as a product
of k transpositions. Clearly, age(m) = n—s, where s is the number of disjoint cycles
in the cycle decomposition of w. Moreover, it if follows directly from the definition
that age(ro) < age(rw) + age(o). Let F¥°ZQ[S,] be generated by all elements of
age < i. Then F; - F; C Fi;;. Hence, the subspaces F;®° define an ascending
filtration of ZQ[S,], and we may pass to the associated graded ring gr*®® ZQ[S,].
The discussion above makes the following theorem look very plausible. The same

result was obtained independently and by a quite different method by Vasserot [37]:

THEOREM 6.10. — The map
® : gr*e® ZQ[S,] = H*(Hilb™(C?))

is an isomorphism of rings that is degree preserving if the age is doubled.

For a proof within the given framework I refer to the joint paper with Sorger [26].
The key point is that due to Proposition 6.8 we have ®(}_ ¢ age(m)=i) = c;(0M)
and that these elements generate the rings gr*s¢ ZQ[S,,] and H*(Hilb™(C?)), re-

spectively.

6.3. Orbifold cohomology. In order to generalise theorem 6.10 for other
smooth surfaces, it is best to use the notion of orbifold cohomology rings. Orbifold
cohomology itself has a longer history, but apparently the ring structure was first
introduced by Chen and Ruan [4],[35]. We will need here only the case of global

group quotients. For this case we refer also to the paper of Fantechi and Géttsche

[9].
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Let X be a smooth projective variety on which a finite group G acts in such a way,
that wx is locally trivial as a G-linearised sheaf. Equivalently, the stabiliser group
G, of every point z € X is supposed to lie in SL(T, X).

Let g € G be an element of order n. The fixed point set X9 is a smooth subvariety of
X. The isomorphism class of the tangent space 7, X considered as a representation
of the cyclic group (g) is locally constant on X9. Let exp(2mik;), j = 1,...,dim(X),
denote the eigenvalues of g|7, x. The k; are normalised by the requirement k; €
Qn0,1). Then the age of g is the locally constant function age(g) : X9 — Ny with
age(g)(x) = 32, k;-

REMARK 6.11. — In the previous subsection we have already defined the age of a
permutation 7. The connection with the present definition is this: The symmetric
group acts on (C?)™ by permuting the factors. Let 7 be a permutation with disjoint
cycle decomposition 7 = 21 - ... - 25, and let (2;) =: ¢;. The fixed point set of 7 is
isomorphic to (C?)*, and the eigenvalues of 7 are exp(27ik/(,) with k =0,...,(,—1
and p=1,...,s, each of them counted twice. The sum of all these k/¢, gives the
age of 7 in the new sense, namely

s lp—

age(m —222k/€ —Zﬁ—l)zn—s.

p=1 k=0
This agrees with the previous definition.

Consider (m,pry) : G x X = X x X, where m is the action of G on X, and define

the inertia subvariety I C G x X by means of the cartesian diagram

I — GxX

l l

X 2 XxX

In other words, I = |J,cs{g} x X?. We may consider age as a locally constant
function on I. The group G acts naturally on G x X (by conjugation on the first
factor) and I is a G-invariant subspace. Let
H*(X,G) := H*(I)[-2age] = @H X9)[—2age(g)]
geG
and
ab(X/G) = H (X, 0)% = & H*(X9)%[-2age(9)),
lgl€G/~
where in the last sum ¢ runs through a set of representatives for the conjugacy
classes of G, and Cy C G is the centraliser of g.
This defines the orbifold cohomology of X/G as a vector space. It contains the

ordinary cohomology H*(X/G) as the direct summand corresponding to the neutral
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element of G. The other direct summands are called twisted sectors in the physically
inspired terminology.
In order to define a product on H} , (X/G) one first defines a product on H*(X, G)

and shows then that this product is G-equivariant. Define a map
m: H*(X9)[~2age(g)] x H*(X")[~2age(h)] — H"(X")[~2age(gh)]

by

m(a, B) = ix(alxan U B xan Ucgn),
where X9" = X9 1 X" is the fixed point set of the subgroup H C G generated by
gand h, i : X9" — X9" is the inclusion map, and Cq,n € H*(X9") is a certain
cohomology class still to be defined:
There is a unique ramified cover ¢ — P! with Galois group H, ramified over
{0, 1, 00}, such that the inertia groups over the points 0,1 and oo are generated by

g, h, and gh, respectively. Now
Cq,h = Ctop ((TX|X9~" ¢ H' (Cv OC))H) .

On the right hand, TX|x,.» is an H-bundle that is twisted with the H-represen-
tation H'(C,O¢), and ¢4, is the top Chern class of the H-invariant part of this
bundle. The following theorem is by no means obvious [9].

THEOREM 6.12. (Fantechi-Gdéttsche)— m preserves the grading and is associative.

So finally, H*(X,G) has got a ring structure. It is not difficult to check that
this ring structure is G-equivariant and therefore gives rise to a well-defined ring
structure on the orbifold cohomology H,, (X/G).

THEOREM 6.13. — Let X be a smooth projective surface with numerically trivial

canonical divisor. Then there is a ring isomorphism
H* (Hilb™ (X)) & H},, (X7/S,).

I will restrict myself to a few comments on the logical dependence of the various
ingredients for the proof:

1. The theorem is not literally true unless one modifies the definition of the orbifold
cohomology by making certain sign twists, see [9].

2. The isomorphism of the underlying graded vector spaces follows directly from
Gottsche’s formula.

3. Li, Qin and Wang [28],[29] have shown that the homogeneous components of
the elements o[”, a € H*(X), generate H*(Hilb™ (X)) as a ring.

4. Sorger and the author [27] constructed an abstract ring H*(X)[™ and showed
that H*(Hilb" (X)) = H*(X))!"]. The key point being again the explicit formula
of c(OWh).
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5. Fantechi and Gé&ttsche [9], and independently, Uribe [36], computed the orbifold
cohomology ring H*, (X™/S,) and showed that H'(X"/S,) = H*(X))".

Ruan proposed the following more general conjecture, of which the theorem above

then verifies a special case:

CONJECTURE 6.14. (Ruan)— LetY be a symplectic complex manifold and assume
that the group G acts on'Y preserving the symplectic structure. Assume furthermore
that the quotient Y/G admits a crepant resolution Z — Y/G. Then there is a ring
isomorphism H*Z =2 H*, (Y/G).

Besides the case of the Hilbert-Chow map p : Hilb"(X) — X"/S,, for K3 and
abelian surfaces that is covered by theorem 6.13 the following instances of Ruan’s
conjecture have been proved:

- The Kummer varieties K, _1(A) associated to an abelian surface A resolve the
quotient A™1 /Sy, for the acion of S, on the subvariety = A™1 of all points in A™
of sum 0. This case was done by Britze [3] in his Ph.D. thesis, using calculations
of Fantechi and Gottsche [9].

- Let I’ C SLy(C) be a finite subgroup. The wreath product I';, = '} S, acts on
(C*)", and the n-th Hilbert scheme of a minimal resolution of C?/I" provides a
crepant resolution of the quotient C>™/T",, = S™(C?/T). The conjecture was proved
for this case by Wang [39].

- More recently, Ginzburg and Kaledin [21] proved the conjecture for the linear
case, i.e. a symplectic action of a finite group G on a symplectic vector space V.

The methods are very interesting and quite different from those discussed above.
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